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Abstract—Compressional seismic P-waves, propagating in poroelastic, fluid saturated, laminated
sediments are strongly affected by the medium heterogeneity. Here, simple analytical expressions
for the P-wave phase velocity and attenuation coefficient are derived. Both are functions of frequency
and statistical medium parameters such as correlation lengths and variances. The theoretical results
are compared with results from numerical simulations and show good agreement. In heterogeneous
media, impedance fluctuations lead to poroelastic scattering ; variations of the layer compressibilities
cause inter-layer flow (a 1-D macroscopic local flow). From the seismic frequency range (10-100 Hz)
up to ultrasonic frequencies, attenuation due to heterogeneity is strongly enhanced compared to
homogeneous Biot models. The new theory automatically includes different asymptotic approxi-
mations, such as poroelastic Backus averaging in the quasi-static and the no-flow limit, geometrical
optics, and intermediate frequency ranges. © 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

A seismic wave in randomly heterogeneous elastic media faces multiple scattering and is
exponentially attenuated due to coherent backscattering even without the presence of any
dissipative mechanism (Sheng, 1995). Additionally, in porous saturated rocks a propagating
wave causes fluid flow that leads to an extra attenuation. In homogeneous media this
dissipation is caused by the relative movement between the solid matrix and the fluid, the
so-called Biot global flow (Biot, 1962). The Biot theory predicts the existence of two
compressional waves in porous saturated rock, a normal P,-mode and the highly attenuated
P,-mode, the so-called slow wave.

In heterogeneous media, seismic waves that propagate through a stack of layers with
variable compliances may additionally cause inter-layer flow of pore fluid across interfaces
from more compliant into stiffer layers (White, 1983 ; Norris, 1993 ; Gurevich and Lopat-
nikov, 1995). Below a characteristical frequency w, defined in eqn (5), in the quasi-static
limit, the fluid pressure is equilibrated between adjacent layers due to viscous fluid motion
across the layer boundaries (excitation of diffusive Biot-slow waves at the interfaces,
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Chandler and Johnson, 1981). The generation of propagating Biot slow waves at a per-
meable interface has been observed in several laboratory experiments at ultrasonic fre-
quencies above w, (Plona, 1980; Rasolofosaon, 1988). In this no-flow limit the layers
behave like isolated since for these frequencies the fluid pressure is no longer equilibrated
by fluid diffusion across interfaces.

Even if the layers are virtually isolated, open-pore boundary conditions are the only
ones which are in accordance with a consistent use of Biot theory for the whole medium,
including surfaces for which the medium parameters are discontinuous (Gurevich and
Schoenberg, 1997, 1998). According to the same study, poroelastic media with closed or
partially open interfaces can be modeled by replacing such an interface with a thin poro-
elastic layer with permeability proportional to its thickness d and taking the limit d — 0.
The proportionality constant is defined as a measure of the hydraulic permeability of the
original interface, ranging from zero for closed interfaces to infinity for open ones.

While each of these attenuation mechanisms has been studied before, here a com-
prehensive theory is presented that comprises all three mechanisms and their interactions.
The new theory ( first proposed by Gelinsky and Shapiro, 1997a) is a poroelastic extension
of the generalized O’Doherty—Anstey formalism for elastic waves in multilayered media
(Shapiro and Hubral, 1996). Predictions by the new theory are compared with numerical
results that were derived using a propagator matrix method (also called layer code or the
Thompson—Haskell method ; Schmidt and Tango, 1986). Both theoretical and numerical
calculations are consistently performed using open-pore boundary conditions.

STATISTICAL MODEL

The poroelastic generalized O’ Doherty—Anstey theory is a small perturbation approach
that describes statistically the heterogeneous medium. The medium parameters (represented
as X = X,(1 +¢4(2)), consisting of background X, and fluctuations ¢,(z)), are the poroelastic
constants, rock density @, porosity ¢, permeability k£, and the fluid properties : viscosity #,
density oy and the bulk modulus K. It is assumed that the first moment of the fluctuations
{e> = 0 and moments {&") higher than the second one are small and thus can be neglected.
Yet the theory may work remarkably well even for rather strong fluctuations of more than
20% (the exact limiting values are the same as in the elastic case and given in Shapiro and
Hubral, 1996). Fluctuations of permeability can be much larger than 20%. These fluctua-
tions affect the global flow attenuation and are important only for frequencies of the
order of Biot’s critical frequency . defined in eqn (4) (for more details on permeability
fluctuations, see Shapiro and Miiller, 1998). Practical applications of the new theory
comprise the analysis of surface seismic-, VSP-, and borehole acoustic data. These measure-
ments generally are performed in a frequency range well below w, so that this is not a
strong limitation.

Throughout this paper, the brackets denote averaging over the statistical ensemble,
i.e., over many realizations of the random medium under consideration. In practice, there
exists only one set of logs providing the parameters of the one medium that is studied, and
spatial averaging can be used to find the auto- and cross-correlation functions of the
fluctuations. The results that we obtain characterize the wave propagation in a single typical
realization of the medium. The correlation function can be written as the product of a
function ®(d/a) which depends on the depth increment é and correlation length a and of
the variances 63,(6 = 0) = 6%,. The correlation functions are defined by:

L

03x(0) = (ax(Dex(z +0)> = %J ex(2)ex(z+9) dz.

0

axr(8) = 1/2(ex(2)ex(z+6)> +<ex(z+8)ey(2)D). ()

Here, a is the correlation length of the fluctuations. A typical stack of random layers is
supposed to be thick enough to cause self-averaging of the P-wave’s vertical phase increment
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and of its attenuation coefficient—the averaging is performed in the process of wave-
propagation (references in Shapiro and Hubral, 1996).

THEORY

The starting point to describe layered poroelastic media is the system of Biot’s equa-
tions (Biot, 1962). For vertically propagating plane waves, these equations are transformed
into first-order differential matrix equations. This is done in analogy to the elastic case
described by Aki and Richards (1981). The transformed Biot equations read :

&,
d%+PC =0. )

The wavefield parameters are contained in the vector C=(u.,1..,w., po". Its elements are
the vertical displacement of the solid phase, u,, the corresponding relative displacement of
the solid and the fluid phase, multiplied by porosity, w,, the vertical stress 7., and the fluid
pressure p,. All are functions of depth. The matrix P, containing all information about the
medium, is given by :

¢ 1 o R
R
—ow* 0 —ouw’ 0
P= | L1 (3)
o x4
R L T
Low’ 0 ing 0

where P, = Kd+§yd is the dry P-wave modulus, K, and y, are the bulk and shear moduli
(throughout this paper, the subscripts d, g, f denote properties of the dry frame, of the
grain material, and of the fluid, respectively) ; H = P,+«’M is the saturated P-wave modu-
lus, with « and M defined by: o = 1 - (K/K,) and M = [(¢/K)+[(a—¢)/K,)]"'. The
constant N is defined as N = MP,/H. The permeability k& and viscosity » enter the theory
via the Darcy coefficient § = y/k which appears with an extra frequency factor in eqn (3).
With these parameters, Biot’s critical frequency is given by:

=
S

w, =

. S

=
~

Q

and the characteristic frequency separating the inter-layer flow and the no flow regime is
defined by

Wy = 7. (5)

It is strongly dependent on the correlation length 4 of the medium heterogeneity.

The matrix P = P,+ P, consists of a homogeneous background part P, and a part P,
that describes fluctuations. The eigenvalues of P, are ik, and ik, (K|, &, are the complex
wavenumbers of Biot’s fast and slow compressional wave, respectively). Taylor expansion
in the small fluctuations &, keeping only terms up to second order in ¢, yields the fluctuation
matrix P,. Diagonalization of the matrix P, is done by a linear transformation
P, =E;'-P,'E,. Here, E, is the eigenvector matrix of Py, and E;' its inverse. The
resulting matrix reads:
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i£, 0 0 0
P = 0 iR, 0 0 ©
0 0 —iR 0
0 0 0 —IiR,

Next, P, is replaced by P, = E; ' -P,-E,. The elements of P, can be expressed by eight
known combinations of the medium fluctuations, ¢, .. ., c; and reads:

iﬁ, +c Cy Cy Cy
Cs Ky +¢s c; Cy
P'=Py+P. = N . (N
—C3 —Cy —IK; — —C>
—cy —Cy —Cs —IiRk, —cg

Finally, the wavefield vector is transformed, &= E;'¢. The elements of & = (d\, ds, uq, u2)7,
which is continuous across interfaces, are for the homogeneous background medium the
displacements caused by down- and up-going waves of type 1 and 2, respectively. Thus,
eqn (2) is transformed to:

dé .
d_f +(Py,+P)E=0. (8)

In the following, it is assumed that the fluctuations and, therefore, the elements of P, are
small and that system (8) can be solved by a small perturbation expansion. This yields the
time-harmonic transmissivity 7 for a stack of layers with the thickness L as a function of
the eigenvalues of P, and of the elements of P,. For vertical incidence,

T=exp[i(WYL—-wi)—7L] 9

describes the transmission of a compressional plane wave through a stack of thin layers
with the total thickness L between two homogeneous halfspaces on its top and bottom.
The P,-wave phase velocity, ¥, = w/¥, and the attenuation coefficient y can be calculated
from 7.

The next steps to derive the transmissivity are performed in analogy to the purely
clastic case (Shapiro and Hubral, 1996). However, now there is an interaction between the
fast P,-wave and the strongly attenuated P,-wave (due to the heterogeneity of the layered
medium). This interaction is similar to that between P- and SV-waves for purely elastic
heterogeneous media in the case of oblique incidence. The following boundary conditions
areconsidered: d(z=0)=1,d,z=0=0,u(z=L)=0,u(z=L)=0.Atz=0o0nlya
down-going fast P\-wave is given. In the depth interval 0 < z < L, however, 45, u,, and u,
are not equal to zero because of the internal scattering processes caused by the heterogeneity.
Integrating eqn (8), using the boundary conditions, and keeping only fluctuations of first-
order, the first approximations (superscript 1st) for the down- and up-going waves are
obtained :

z

d}*(z) = exp (iﬁlz—i-f

0

et (z") dz’>,

d¥'(z) = exp(ik,z) J ' () exp(—~ik_z) dz,

0

L

ul*(z) = exp(—iR,2) J e (z) exp(Rik, ') dz’,
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L

us'(z) = exp(—ik,z) j (2’ exp(iR . 2') dz'. (10)

Here, we defined &, = &,+ &), and & . = &,—&,. To calculate the transmissivity of the P,-
wave only the second-order approximation of 4, is needed. Further, to obtain the phase
velocity and the attenuation coefficient of the dynamic equivalent medium, the logarithm
of the transmissivity must be analyzed. For this it is convenient to rewrite the first equation
of system (8) :

ot +iry IR 1 ¢)) d,(2) u, (2)
g =& +cl(g)+c3(z)~l@—) +c,(2) 40 +e, iG) (11)

where r® and ' denote the real and imaginary parts of In(d,). Substituting in this equation
the first order approximation (10) and neglecting terms of a higher order than O(g?) yields:

L)+ (L) = iﬁlL—f-JL [cl(z)+c2(z) er-s J cs(z) e ®-7dz’

0 0

L L
-{—c;(z)e‘z"’z!:J c3(z’)ezi’?1“’dz’+c4(z)e"E“’J a(z’)e”“’dz’}dz. (12)

z

This equation provides a solution for the transmissivity for fast P,-waves. Using next the
assumption that the thickness L of the stack of layers is much larger than the wavelength
and all correlation distances involved, the limits

. (L) 05
‘P=ngrg—z—, 7= —jlim——, (13)

are evaluated for stationary random media. Because of the self-averaging property, these
limits are equal to their statistically averaged values. Thus, it is possible to use properties
of ensemble averaging to express the attenuation coefficient and the phase increment in
terms of just a few statistical parameters of the medium fluctuations. Due to the averaging,
random functions are replaced by their expectation values. In the same way, the products
of any two of these functions are substituted by the respective auto- and cross-correlation
functions. Since the medium fluctuations are stationary functions of depth, their expectation
values are independent of depth and their correlation functions depend only on the depth
increment 6 = z—z’. The indicated calculations give both ¥ and y as functions of the auto-
and cross-correlations of the medium fluctuations:

¥=xt+4 —J‘x’ O(5/a) [ﬁBexp(~6KL) cos (5;& - g)
0

K

+\/EBexp(—6K'+) cos (51& — 4)+ Cexp(—20K}) sin(25x‘1‘)]d5, (14

0

v = k| +J D(6/a) [—\/EBexp(——éx‘_) cos (5&5 + %)
—ﬁBexp(-—énL) cos (&cﬁ + §>+ Cexp(—26k}) cos(26;c‘f)]d5. (15)

In results (14) and (15) we introduced three new quantities, 4, B and C [see eqn (20)]. They
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are linear combinations of the variances of the medium fluctuations. The superscripts R
and I define the real and imaginary parts of the wavenumbers, e.g., &, = % +ix}. We
assume only one correlation function ®(é/a) with a single correlation length a for all
fluctuations.

The calculation of eqns (14) and (15) can be performed for any integrable correlation
function ®(5/a). As long as the correlation function is rapidly decreasing for an increasing
argument, any kind of function yields basically the same low-frequency behavior of the
inter-layer flow (yp., oc @'°) and the scattering attenuation (yy, oc w?, 1-D-Rayleigh
scattering). In the case of exponential media, the attenuation above w, is found to be
Paow 0C 0”7 and yy,, = const. On the other hand, periodic media behave completely
differently. Their correlation function is not a rapidly vanishing function of its argument,
and inter-layer flow attenuation for low frequencies is proportional to g, o @? (Gurevich
et al., 1997). There is no scattering attenuation and dispersion in periodic media, but pass
and stop bands can be observed. For the calculation of (14) and (15) we choose an
exponential correlation function, ®(d/a) = exp(—d/a). Exponential correlation functions
of fluctuations of velocity and density, and thus of the poroelastic constants, are often
observed in seismic practice (White et al., 1990).

PHASE VELOCITY AND ATTENUATION

The result for the phase velocity reads for an exponential correlation function [inte-
gration of eqn (14)]:

o _ A Ba(l1+a(xk® +x)) __Ba(l +a(xk® +x4))
Ve 14+2ak" + (kR +kY) 14 2ak', +a* (% +&L)
2Ca* kR
- ——. (16)
1 +daxt +4a* (B + 1)
The corresponding attenuation coefficient [integration of eqn (15)] is given by:
)t Ba(l—a(x® —ch,)) _ Ba(l —a(x? —fd,)) 7
14+2ak' +a? (k2 +Y) 14 2ak", +a* (&% +£4)
Ca(1+2ax!
a(l+42axy) an

1 +4ar! +4a* (&% + V) .

These results are valid under the assumption of small fluctuations, neglecting terms of O(&’)
and higher, but they are not restricted by any relationship between the wavelength and the
correlation distance of the medium fluctuations and thus define “‘dynamic equivalent med-
ium parameters”. Equation (14)—(17) are independent of any kind of low frequency assump-
tion even with respect to Biot’s critical frequency (if a suitable Darcy coefficient § is chosen,
see Biot, 1962).

Whereas the wavenumbers of Biot’s fast and slow wave are known for all frequencies
(given below), the new constants A, B, and C are rather complicated functions of frequency
and of the numerous auto- and cross-correlation functions. For a better understanding of
the implications of these results, we introduce here an approximate solution, valid in
the frequency range below Biot’s critical frequency w, (usually, @, > w,). Assuming that
v = wjw, « 1, the small parameter v can be used for series expansions of the constants A,
B, and C. Since attenuation and dispersion due to inter-layer flow and scattering are
observable in most media for frequencies w « w,, it is possible to neglect terms of O(v’)
and higher (like permeability fluctuations) in the various series expansions. Since for v « 1
it always holds that
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2 o 2
x'}»;c,“»rc‘f:w e (e M 5 (18)
2. Hor \ @ H

we assume that £, ~ &, and &_ & &,. Further, &, ~(1 +i)k, and & ~ x} = «,. The wave-
numbers x;, k, are defined by x, = w\/o/H and k, = ./ ww,Q;/2¢N. For convenience, A,
B, and C keep their names after being expanded in a truncated series. These approximations
were proposed first by Gurevich and Lopatnikov (1995). As a specific example, we study a
medium that exhibits fluctuations of the frame modulus P, the Biot constant «, and the
fluid bulk modulus (contained in M). Strong variations in the fluid bulk modulus can be

observed in the presence of partial saturation : a small amount of gas in the fluid significantly
reduces its effective bulk modulus which-is defined by

[(liquid Kgas

K, = ) 19
1= §Kos + (1= 5) Knaus (19)

For these fluctuations the constants 4, B, and C are calculated as outlined above and read :
w [o P aiM ag M}
A - 5 FOT_IEO (U%P-‘_ 0 (O-MM+2O-P51)+ 0})3 Oo'ozzfx s
2_B o | g PyM,
Kk, 2V H, H?

ad M, Py —aiM,y)?
.<GPP 2O-PM+GM4M_2-_.—‘(L_O( Gpy 612\/11)+(_&—040_)* aa>>
C o g Pj
2k, 8\ Hy 12
oM. ag M3
- (a%p+2—3,%(a%M+zaia) + "(aim+4oia+4aﬁu)>. (20)
0 0

With these constants, keeping in mind the frequency dependence of ;o ,
K, oC \/5, it is easy to see that the phase velocity has three limiting values that may be
called a quasi-static velocity V,, = w[k;+ 4] ' for w — 0, an intermediate no-flow velocity
V,r= w[k,+A—2B/x,]~" for w » w, but wavelengths smaller than the correlation length
a, and finally a ray-theoretical limit V,,, = w[x,+ A4 —2B/x,— C/(2x,)] ' above that limit
(but necessarily below Biot’s w,). A more detailed discussion of these limiting velocities,
including their different anisotropic behavior for non vertical incidence, can be found in
Gelinsky and Shapiro (1997b).

For a heterogeneous sediment model consisting of a stack of layers with average
properties close to that of water-saturated Berea sandstone (Norris, 1993), we calculated
phase velocity and attenuation Q' = 2y/k, both as a function of frequency, normalized by
Biot’s critical frequency. Here, the theoretical results are examined (Figs 1 and 2) and in
the next section they are compared with the numerical results (Figs 3 and 4). The model
discussed in Figs 1-4 has 30% fluctuations in z,, 25% in K, 15% in K}, as well as 5% in @
and 1% in K. This corresponds to P-velocity fluctuations of almost 14%. The variation of
K, with depth is caused by partial gas saturation (2% gas). Here it is assumed that the
fluctuations of K, and K, are uncorrelated. The effects of correlation between K, and K,
are addressed below in the section on partial saturation. The medium can be described
with the followmg variances: 05, = 0.0719, 62, = 0.0267, o2, = 0.0128, 63,, = 0.0319,
o2, = —0.0135, 62, = —0.0304. The corresponding average values are : P, = 2.89-10'° Pa,
My, =1.12-10" Pa, and o, = 0.67. The resulting phase velocity [eqn (16)] and its three
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Fig. 1. Inverse quality factor as function of frequency, normalized by Biot’s critical frequency
J. = 1.1x10° Hz for the model described in the text. From the left to the right peak, the correlation
length a is 3.5, 1.25, 0.37, 0.08 m. Attenuation due to inter-layer flow dominates for the lowest
frequencies. The significant peaks in an intermediate frequency range are caused by poroelastic
scattering. Biot’s global flow attenuation begins to be important for the highest frequencies.
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Fig. 2. Phase velocities for the same model as in Fig. 1. The curves correspond (from left to right)
to correlation lengths a of 3.5, 1.25, 0.37, 0.08 m. The limiting velocities as defined in the text are
plotted with dashed lines. For lowest frequencies, the velocities asymptotically approach the limiting

value vV,

the intermediate frequency range is characterized by ¥, and the high frequency limit is

given by V.

limiting values are plotted in Fig. 2 and the attenuation Q' [based on eqn (17)] is shown
in Fig. 2. Biot’s critical frequency for this model is w, = 2n x 1.1 x 10° s™'. Thus, the surface
seismic frequency range can be found approximately between —4 and — 3 on the logarithmic
frequency scales. The correlation lengths (exponential correlation function) considered in
Figs 1 and 2 range from 3.5 m down to 8 cm (curves from left to right: a = 3.5, 1.25, 0.37,
and 0.08 m). For the thicker layers (¢ = 3.5, 1.25 m), the inter-layer flow cannot equilibrate
the pressure at seismic frequencies—the maximum of inter-layer flow attenuation is below
1 Hz. For the thinner layers (a = 0.37, 0.08 m), a rather continuous change from the quasi-
static to the ray theoretical velocity limit can be observed. This high frequency limit is
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Fig. 3. Comparison of theory (solid line) and numerical result (dashed line) for the inverse quality

factor. The model parameters are the same as in Fig. 1 and given in the text. The correlation length
ais 1.25 m.
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Fig. 4. Comparison of numerical result (dashed line) with theory (solid line) for the phase velocity.
The model parameters are the same as in Fig. 2 and given in the text. The correlation length a is
again 1.25 m.

slightly affected by global flow dispersion. For the larger correlation lengths, the peaks of
scattering and inter-layer flow attenuation can be distinguished. Attenuation due to the
Biot global flow becomes relevant above wjw, =~ 1072,

NUMERICAL RESULTS

The analytical results were verified by numerical modeling with the OASES software
(Schmidt and Tango, 1986) which numerically simulates the linear dynamics of horizontally
layered poroelastic systems using an advanced version of the propagator matrix—reflect-
ivity approach. In the present study, OASES software was used to compute transmission
coeflicients of elastic waves propagating in a typical, finely-layered poroelastic structure.



4748 S. Gelinsky et al.

These transmission coefficients were then used to reconstruct attenuation coefficients and
phase velocities as function of frequency. The investigation of poroelastic structures is
possible using the so-called Biot extension of OASES that allows layers to be poroelastic,
fluid or gas saturated, and interacting (open-pore boundary conditions at interfaces).

The model that was used to compare theory and numerical results consisted of 100
layers. A larger number of layers would make the numerical results smoother and, in the
limit of an infinite number of layers, the numerical result should exactly equal the theoretical
prediction. However, the absolute transmissivity of the stack of layers decreases with an
increasing stack thickness, prohibiting a reasonable determination of phase and attenuation
for more than approximately 500 layers. Due to the finite thickness of the numerical
model, both attenuation and phase velocity results show many random oscillations due to
constructive and destructive interference. These oscillations (which can also be observed in
purely elastic models, Shapiro and Hubral, 1996) can be found mainly between 100 Hz and
10 kHz where (poro-)elastic scattering is strongest and the seismic wavelength is comparable
to the correlation length.

Figure 3 shows the inverse quality factor for this model. The solid line marks the
theoretical result and the dashed line is derived from the numerical results. The correlation
length is 1.25 m, all other parameters are the same as those defined above. The theory and
numerical experiments are in excellent agreement over the whole frequency range up to -
approximately 10% of Biot’s critical frequency. For higher frequencies the underlying low
frequency approximations are not justified. Especially the assumption that the Biot global
flow attenuation is proportional to (w/w,)? is not adequate in this frequency range, cf Fig.
3. Figure 4 features the corresponding plot of the phase velocity, again for a correlation
length of 1.25 m. The numerical phase velocity curve (dashed line) shows the same random
oscillations between approximately 100 Hz and 10 kHz as does the attenuation (Fig. 3).
Otherwise, the agreement between the theory and the numerical experiments is excellent
over the whole frequency range. Our numerical experiments further demonstrated that the
results are rather insensitive to density fluctuations and that their omission in the analytical
formulas (20) (leading to a significant simplification) is fully justified.

The theory in its present form is limited to the description of plane waves that are
vertically incident on a horizontal stack of layers. A generalization to non-vertical incidence
and dipping layers is possible but would strongly complicate the analytical calculations.
We simulated non vertical incidence numerically and found that our theory is well applicable
in its present form even for angles of incidence that differ by more than 20° from vertical
incidence.

PARTIAL SATURATION

In two different models (Figs 5 and 6) the effect of partial saturation on attenuation is
studied in more detail. This also helps to understand the mechanism of inter-layer flow
more clearly. Before (Figs 1-4) the fluctuations of saturation [i.e., of the fluid bulk modulus
(19)] and of the poroelastic constants were uncorrelated, making 0'12<,,1<, = 0.004 very small.
Figure 5 now shows the results for gas bubbles being located mainly in the more com-
pressible part of the presence (aidK, = 0.04), and Fig. 6 depicts the opposite case—gas
accumulated mainly in the stiffer layers (o}‘}dk’ = —0.04). The corresponding o3, 05, and
o3, are given in the figure captions. A compressional wave that propagates through the
stack of layers tends to squeeze fluid out of the weaker (more compliant) layers into the
stiffer layers with a less deformable porespace. The efficiency of this mechanism is reduced
if gas occupies the weaker porespace (Fig. 5) and enhanced in the opposite case (Fig.
6). Also the impedance contrast is affected by the distribution of gas: if gas is located
predominantly in the softer layers and water in the stiffer layers, the impedance contrast is
increased as compared to homogeneous saturation. Accordingly, the attenuation due to
scattering (Fig. 5) is increased. The opposite effect can be observed in Fig. 6. Scattering,
however, is much less affected by partial saturation than the inter-layer flow.

Also, the velocity dispersion is a function of partial saturation and is influenced by the
way its fluctuations are correlated with those of the poroelastic constants. For lowest
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Fig. 5. Reduced inter-layer flow attenuation for a model with gas mainly in the softer portion of the

porespace. With the exception of the correlation of gas saturation and poroelastic fluctuations, the

model is the same as that in Fig. 3. Here, g,,, = 0.0542, 0,,, = 0.0625, o,, = —0.0264. The
numerical result is given with a dashed line, the theoretical prediction with a solid line.
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Fig. 6. Enhanced inter-layer flow attenuation for gas mainly in the less compressible porespace. The
numerical result is given with a dashed line, the theoretical prediction with a solid line. The
parameters are the same as in the previous model, with the exception of: a,,, = 0.0005,
Opyr = —0.0063, g, = 0.0026. All plots are explained in more detail in the text.

frequencies the inter-layer flow (if present like in the model of Fig. 6) squeezes water
into the less compressible porespace, making V,, the same regardless where the gas had
accumulated. For frequencies around @, and higher, however, the impedance difference
and the absence (or presence) of inter-layer flow significantly affects the velocity. The
influence of this effect on the limiting velocities V,,, V,, and V,,, and their anisotropy is

illustrated and discussed in more detail in Gelinsky and Shapiro (1997b).

CONCLUSIONS

An extension of the generalized O’Doherty—Anstey formalism for poroelasticity has
been derived. This new theory then has been applied to describe attenuation and dispersion
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of seismic waves in saturated, layered sediments. The theoretical predictions of significant
attenuation and some dispersion due to the heterogeneity could be verified by comparison
with numerical results derived with a propagator matrix—reflectivity approach.

In layered, saturated sediments dispersion and attenuation depend on frequency and
on fluctuations of the poroelastic parameters, permeability, and on fluid properties like the
bulk modulus, density, and viscosity. The resulting dynamic-equivalent medium model
gives the P-wave phase velocity and the attenuation coeflicient in the full frequency range
from the quasi-static to the ray theoretical limit, including the no-flow-regime for inter-
mediate frequencies. [ts results are in excellent agreement with independent numerical
studies. Since the new theory utilizes a fully analytical model, it provides a fast means for
upscaling of acoustic velocities to lower frequencies, utilizing, e.g., velocities measured from
core samples to predict sonic log velocities or those in the surface seismic frequency range.

Unlike earlier studies, here the combined effects of scattering and fluid flow are treated
together from first principles. The attenuation in comparison to homogeneous systems is
strongly enhanced. In addition to Biot’s global flow, P-waves are attenuated in het-
erogeneous media due to scattering and inter-layer flow. These results suggest that a great
part of the attenuation that can be observed in porous saturated sedimentary rocks at
seismic frequencies is caused by scattering and local flow on macroscopic length scales
defined by the layering. The various attenuation mechanisms are found to be approximately
additive. The inter-layer flow effect contributes significantly to the total attenuation in the
seismic frequency range, especially for thin layers (with correlation length of centimeters)
with high permeability. Elastic scattering is mainly caused by heterogeneities on larger
scales (correlation length of several meters). It is important over a broad frequency range
from seismic to sonic frequencies. Biot’s global flow (the relative displacement of solid
frame and fluid) contributes mainly for ultrasonic frequencies.
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